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1 Introduction

“Photography is the simultaneous recognition, in a fraction of a second, of the
significance of an event.”

— Henri Cartier-Bresson, Photographer

This paper investigates the challenge of extracting highlight moments from videos. To perform
this task, a system needs to understand what constitutes a “highlight” for a video domain (e.g. a
skateboard trick) while at the same time being able to scale across different domains. Prior works
have largely explored making use of domain-specific features (e.g. presence of people [7] or goal
scores in sports [11]) or expensive training of models with large-scale data (e.g. videos with labeled
highlight/non-highlight segments [10], pairs of highlight videos and source videos [8], or proxy labels
such as short user-generated videos [9]). In this work, our key insight is that photographs taken by
photographers tend to capture the most remarkable or photogenic moments of an activity with great
composition and framing. Based on this insight, we present Videogenic, a system capable of creating
domain-specific highlight videos for a wide range of domains. In a human evaluation study (N=50),
we show that a high-quality photograph collection combined with semantic encodings of CLIP, a
neural network with semantic knowledge of images, can serve as an excellent prior for finding video
highlights in arbitrary video domains with no additional training necessary. In an expert study (N=10),
we demonstrate Videogenic’s usefulness in helping video editors create highlight videos with lighter
workload, shorter task completion time, and better usability. We encourage you to have a look at
example results of Videogenic at https://humanvideointeraction.github.io/videogenic.

2 Method

We first ask the user to type in a highlight prompt (e.g. skydiving) to specify the theme of the
highlight video. Given a prompt, we search on a database of professional photography (e.g. Adobe
Stock) for 10 professional photographs depicting the activity (Figure 2). We encode each photograph
through the CLIP image encoder (P). We then average all the photographs’ representations P1,...,10

to create a representation for the average photograph (P̄), which we use as the prior for judging
the highlight scores of each video frame. Our intuition is that professional photographs capture the
most highlight-worthy moments of an activity with skillful composition and framing. We found
that creating an average photograph as opposed to using a single photograph reduces the effects
of irrelevant attributes within individual photographs, such as having a particular background or
depicting a particular gender. Next, we encode the video frames through the CLIP image encoder
(V). We then compare distances of the average photograph representation with each encoded frame
via cosine similarities. This gives us a vector of highlight scores (H = P̄ ·V⊤) for each video frame.
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Figure 1: Qualitative highlight results by Videogenic (left) and the baseline (right) for wedding (a),
skateboarding (b), weightlifting (c), bird hunting fish (d), graduation ceremony (e), and solar eclipse
(f). Video sources: https://humanvideointeraction.github.io/videogenic#results.

We normalize the highlight scores across the video on a scale of [0, 1]. Finally, we slide a window
across the frame-wise scores for a continuous N -length interval (e.g. 3 seconds) with maximum sum.

Interface. We provide users with an interface to visualize the distribution of highlight scores across
the video (Figure 3a). The user may scrub through the interface to inspect the corresponding video
frame thumbnail and highlight score (Figure 3b). In Figure 8, we show several example moments in a
skydiving video (skydiving as the highlight prompt). We see that the moments of freefall have the
highest scores, the moments of jumping out of the plane and landing have moderate scores, and the
moments of preparation and boarding the plane have low scores. By changing the highlight prompt
to skydiving landing, we show several example highlight moments based on a new set of images
that were sampled to create the average image (Figure 9). Allowing simple changes of the highlight
prompt can allow users to explore and personalize different kinds of highlights within the same video.

3 Evaluation

Human Evaluation Study. To evaluate the performance of Videogenic, we run a human evalua-
tion study with 50 participants recruited from Prolific [3]. We ask participants to perform paired
comparisons between highlight videos generated with Videogenic versus a baseline method of CLIP
text-video similarity. We generate highlight videos using both conditions for 16 source videos
collected from YouTube covering various lengths (e.g. 30 seconds to 4 hours), formats (e.g. live
broadcasts, vlogs, unedited videos) and categories (e.g. sports, events, nature). Overall, participants
prefer the highlight videos generated with Videogenic on average 80.00% of the time (Figure 10).
Figure 1 shows qualitative examples of highlights by Videogenic (left) versus the baseline (right).

Expert Study. To evaluate the usefulness of Videogenic for video editors, we run an expert study
with 12 professional video editors recruited from Upwork [4]. We ask participants to create highlight
videos with Videogenic versus a baseline method of manual editing with Adobe Premiere Pro. We
measure each participant’s workload using the NASA Task Load Index [6], task completion time in
seconds, and usability using the System Usability Scale [5] for both conditions. Participants report
lower workload, lower task completion time, and higher usability when using Videogenic (Figure 11).

4 Conclusion

This paper takes a step towards general-purpose highlight video generation by building on the domain
knowledge of photographers. In recent years, we see a growth in long-form video content (e.g.
livestreaming [2]) as well as a proliferation of video capturing devices (e.g. smartphones to action
cameras [1]). On the other hand, we see a rapid surge in popularity in short-form video consumption
(e.g. TikTok, Instagram Reels, and YouTube Shorts). We hope Videogenic can help to bridge this gap
by lowering the barrier required to convert long-form videos into engaging short-form highlights.
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Ethical Implications

The introduction of Videogenic into the video editing process may also come with potential ethical
implications. One example is bias in photographs. For example, a search of “wedding” photographs
may depict predominately opposite-sex marriages. Such biases need to be surfaced to users.
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A System Figures

Figure 2: Given an activity label (e.g. “skydiving”), Videogenic retrieves 10 stock photographs
and computes the average photograph representation. Given each frame of a video and the average
photograph, Videogenic performs pairwise comparisons to predict a highlight score for each frame.

Figure 3: The highlight graph visualizes the distribution of predicted highlight scores across the video
(a). The user may scrub through the graph to inspect a corresponding video frame and its highlight
score (b).
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B Qualitative Examples

Figure 4: Example video frames and highlight scores from a skydiving vlog. The highlight prompt is
skydiving. The photo collection used by Videogenic is shown on the top-left.

Figure 5: Example video frames and highlight scores from a skydiving vlog. The highlight prompt is
skydiving landing. The photo collection used by Videogenic is shown on the top-right.
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Figure 6: Example highlights from a breakdance competition video. The highlight prompt is
breakdance. The photo collection used by Videogenic is shown on the top-left. Videogenic
identifies the iconic power moves.

Figure 7: Example highlights from a recording of a fireworks show. The highlight prompt is
fireworks. The photo collection used by Videogenic is shown on the top-right. Videogenic
identifies when the fireworks are in full bloom.
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Figure 8: Example higlights from a wedding video. The highlight prompt is wedding. The photo
collection used by Videogenic is shown on the top-left. Videogenic identifies the highlight moments
of the couple.

Figure 9: Example video frames and highlight scores within around 30 minutes video footage from a
rafting trip. The video clips are recorded by one of the authors using an action camera. The highlight
prompt is rafting. The photo collection used by Videogenic is shown on the top-left. We see that
Videogenic scores the whitewater moments (i.e. raft going through the river rapids) more highly.
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C Quantitative Results
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Figure 10: Human evaluation results (N = 50). The y-axis lists the videos in the evaluation study.
The x-axis shows the percentage of participants who preferred Videogenic’s highlight over the
baseline’s. The dashed line marks the point of statistical significance (p<0.000625).

Figure 11: Expert study results (N=12). Boxplots from left to right: workload measured with NASA
TLX [6] (7-point Likert scale, lower is better) (a), task completion time (seconds, lower is better) (b),
and usability measured with SUS [5] (7-point Likert scale, higher is better) (c).
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