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Figure 1: Given a few design examples (a), PseudoClient learns a computational model of the client’s personal style preferences

(b) to support multiple practical design applications (c).

ABSTRACT

A key task in design work is grasping the client’s implicit tastes.
Designers often do this based on a set of examples from the client.
However, recognizing a common pattern among many intertwin-
ing variables such as color, texture, and layout and synthesizing
them into a composite preference can be challenging. In this paper,
we leverage the pattern recognition capability of computational
models to aid in this task. We offer a set of principles for computa-
tionally learning personal style. The principles are manifested in
PseudoClient, a deep learning framework that learns a computa-
tional model for personal graphic design style from only a handful
of examples. In several experiments, we found that PseudoClient
achieves a 79.40% accuracy with only five positive and negative
examples, outperforming several alternative methods. Finally, we
discuss how PseudoClient can be utilized as a building block to
support the development of future design applications.

CCS CONCEPTS
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1 INTRODUCTION

A key role of the designer is being able to develop a firm grasp of
the client’s implicit tastes [4]. For example, in the case of graphic
design, a hotel group may favor a minimal and luxurious feel, while
an outdoor apparel company may prefer a more bold and rugged
touch. However, since clients are rarely trained to constructively
articulate their design ideas, their comments may often be vague
and difficult to implement [56].

“Make it pop... is the dumbest thing you could
say to a graphic designer.”

— Reddit user HylianHandy

To gain an understanding of the client’s tastes, many designers
arrange early meetings with clients to probe into their personal
style preferences. Some designers use specialized tools to help with
this process of extracting implicit information from the clients, such
as Brand Deck [2]. Brand Deck consists of 100 adjective cards (e.g.,
vibrant, futuristic, historic) that the designer asks the client to go
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through and sort into three piles: you are, you are not, and does not
apply. One caveat of using a tool like Brand Deck is that designers
will need to further examine whether the client’s understanding
of subjective words matches with theirs. Other designers prefer to
give clients more visual examples, such as a logo book [14] or a
mood board [34] consisting of a collage of different visual samples,
and asking the client to pick a few samples that resonate with them.
By using a selection of images, clients won’t need to articulate their
preferences through subjective words, but rather, by simply picking
what they visually prefer. However, even when the client provides a
pool of examples, recognizing a common pattern among numerous
variables such as color, texture, and layout, synthesizing them into a
composite understanding of the client’s style preference, and using
this understanding to generate a new design is a non-trivial task
[15]. In this paper, we ask: can computational systems be used to
aid in the task of learning peoples’ style preferences from a set of
example images?

Motivated by findings that high-level perceptions of a design
are correlated with low-level features of appearance attributes [60],
recent works seek to identify such low-level features using a compu-
tational approach to assist designers. Several works have explored
extracting the underlying structure of designs such as the Docu-
ment Object Model (DOM) tree of a web page [9, 31]. However,
such methods only work with a small subset of design categories,
such as webpages or vector images, where there is an encoded and
explicit structure. For graphic design, where only bitmap informa-
tion is available instead of structural elements such as shapes and
text, other research has explored engineering various hand-crafted
image features such as color histograms and edge maps [26] for pre-
dicting visual style. However, akin to the limitations of rule-based
Al hand-crafted features are limited in representation power and
generalizability as some appearance attributes may be too complex
or abstract to manually define. More recent works have experi-
mented with using neural networks to extract a model of visual
style due to their strong ability in automatically and adaptively
learning the most relevant low-level features [24, 59]. In our work,
we look to use neural networks to automatically learn relevant fea-
tures, but with two key distinctions. First, unlike most data-hungry
machine-learning-based methods, our method only needs a small
handful of examples. Second, prior work mostly attempts to catego-
rize content into subjective style terms (e.g., futuristic, minimalist)
[8, 59] based on the preferences of the crowd. Conversely, our work
focuses on learning an individual’s personal style preference, with-
out ever having to put a word on it nor relying on generalized
conceptions of design style.

We introduce a set of principles for learning a client’s personal
style from few examples. We then use these principles to develop
PseudoClient, a deep learning framework that takes in a handful
of examples and automatically learns a computational model of
the client’s personal style. Our use case focuses on graphic design,
where we feed graphic design samples as input. We first ask the
client to select a few examples they like and dislike. Using the
samples provided, PseudoClient learns the client’s personal style
preferences using a metric learning approach [30] with twin Con-
volutional Neural Networks [29]. Exploiting the benefits of metric
learning with deep neural networks, PseudoClient requires only a
few examples, does not rely on limited hand-crafted features, and
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can be retrained quickly with additional samples. We conduct ex-
periments to assess how PseudoClient compares to other methods
as well as how it may be affected by various factors such as training
sample size and the ratio of positive and negative samples. We
find that PseudoClient outperforms our baseline methods and can
be tailored for different needs. Finally, we discuss PseudoClient’s
capability of supporting the development of future design tools in
three directions: search, feedback, and generation.
In summary, our contributions are three-fold:

o A set of principles for learning personal style from few ex-
amples. The principles are manifested in PseudoClient, a
novel deep learning framework for learning an individual’s
graphic design style from a handful of examples and without
relying on generalized conceptions of subjective style.

e Quantitative and qualitative experimental results demon-
strating PseudoClient’s advantages compared to other meth-
ods. We further examine how number of examples and ratio
of positive and negative examples affect performance.

o A discussion of potential applications where PseudoClient
can support augmenting designers’ capabilities. We illustrate
how PseudoClient is useful as a building block for multiple
practical design applications by exploring three areas of
design work.

2 RELATED WORK

Our work is situated among literature in computational design
understanding. More specifically, our research builds on prior work
in two main branches: assessing aesthetics as a quality indicator
and more fine-grained understanding of artistic style [46].

2.1 Assessing Aesthetic Quality

Computational methods of assessing the aesthetic quality of designs
have a wide range of applications spanning from media editing to
curation. Such methods typically involve defining a set of descrip-
tors for some content and using them to predict human-labeled
aesthetic ratings. Michailidou et al. [36] analyzes statistics of web
page elements such as number of images, words, and links and
Reinecke et al. [40] further incorporates page-level statistics such
as number of leaves in a quadtree decomposition. In applications
where the underlying structural information of the design is not
available, such as bitmap photographs, prior works have engineered
various visual features. Datta et al. [10] extracts 56 features based
on photography concepts such as rule-of-thirds and depth-of-field.
Isola et al. [25] investigates the correlation between image memo-
rability and a set of high-level visual features such as object and
scene semantics.

However, handcrafted features are nevertheless limited as some
important aspects of a design may be too elusive or complex to
manually define. Therefore, work in recent years has investigated
the use of neural networks to automatically learn the most relevant
low-level features for pattern finding. For example, NIMA [50],
one of the top performers on the Aesthetic Visual Analysis dataset
[37], explores using CNNs to automatically discover important
features without human supervision. In our work, we also exploit
the strength of neural networks in feature extraction and do not use
manual feature engineering. Rather than predicting an aesthetics
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rating, we predict a match score: how well does a design align with
an individual’s personal preferences as opposed to the weighted
average of preferences from the crowd.

2.2 Understanding Style

Closely related to evaluating aesthetic quality is the task of un-
derstanding artistic style. We loosely categorize prior work in this
domain into two approaches: tagging, where the task is to automat-
ically assign labels to some content, and similarity, where the task
is to learn the similarity across different content. Note that the two
approaches are not necessarily mutually-exclusive.

Tagging has been extensively studied in information retrieval
and recommender systems communities [11] although fewer works
have explicitly approached tagging in terms of artistic style. Prior
work in tagging by style has largely treated it as some form of classi-
fication problem. Shamir et al. [45] assigns paintings to painters and
schools of art using image descriptors such as color histograms and
edge statistics. Karayev et al. [26] predicts style labels such as bright
and energetic for photographs and paintings using features such
as color histogram and visual saliency. Wu et al. [55] models the
brand personalities of mobile Uls with UI descriptors such as color,
organization, and texture. Vaccaro et al. [51] predicts high-level
fashion styles attributes such as tropical and exotic from low-level
design element language such as color and material using polylin-
gual topic modeling. More recent works have explored style tagging
with deep neural networks. Zhao et al. [59] characterizes personali-
ties for graphic designs such as cute and mysterious. Takagi et al.
[49] proposes an expert-curated fashion style dataset containing 14
categories such as rock and street and found that modern computer
vision classification networks are able to outperform fashion-naive
users but not fashion-savvy users. However, since style tags are
intrinsically subjective, labeling content with style tags is by nature
a noisy task. Thus, our work does not aim to describe personal style
with subjective style terms. Rather, our tags are simply whether a
design “fits” or “does not fit” with an individual’s personal style.

The question of “does a design fit or not fit with an individual’s
personal style?” can also be reformulated as “how similar is a design
when compared to the individual’s personal style?” This formula-
tion opens up an interesting repertoire of research in “similarity
by style” to draw inspiration from. D.Tour [41] and Webzeitgeist
[31] allow search by stylistic similarity based on features of a web
page such as DOM tree depth and number of leaf nodes. Several
other works on learning similarity by style include applications
in infographics [42], illustrations [18], icons [32], fonts [38], fash-
ion [47], and 3D furniture models [33]. In our work, we borrow
from the concept of similarity by style to define personal style
based on similarity with a set of representative examples selected
by the individual. Prior works have explored various methods for
computing similarity, such as through color histograms [22] and
Convolutional Neural Networks [54] (also see Comparison with
Baselines subsection). Recent works in the Machine Learning com-
munity have shown the effectiveness of metric learning approaches
[30, 35] for areas such as fashion [52] and home goods product
design [6]. We build upon the successes of metric learning to design
a metric learning framework for personal graphic design style. To
guide our work, we distill a set of principles.
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3 PRINCIPLES OF LEARNING PERSONAL
STYLE

To support our objective of learning personal style preferences, we
ground the development of PseudoClient in four central principles.

3.1 Principle 1: Learn by Example

Considering that design vocabulary (e.g., minimal, vintage) is inher-
ently subjective and highly dependent and interpreted based on the
individual’s knowledge and experiences [46], we do not ask clients
to indicate their preferences through such vocabulary nor do we
attempt to fit their preferences into such vocabulary. Inspired by
the mood board technique [34], we simply ask the client to supply
us with visual examples and learn to judge the client’s personal
style based on them.

3.2 Principle 2: Learn by a Handful

Since our task is to learn personal style, our examples come directly
from the client of interest. However, asking the client to select mas-
sive amounts of examples is tedious. In addition, prior works have
found that as the quantity of examples required from the client
increases, the quality and consistency of the examples begin to
decrease due to fatigue and the pressure to reach the target of pro-
viding a high number of samples [27]. Based on these observations,
rather than being data-hungry, PseudoClient should be capable of
working with only a handful of examples.

3.3 Principle 3: Learn by Juxtaposition

Findings from prior work in recommender systems [5] suggest
that it is easier to select positive and negative samples than to
discern likeability on a spectrum. Given this, we ask the client
to provide us a set of examples they like (positive samples) and
another set of examples they dislike (negative samples). Our task
then is to determine whether a design fits the positive samples or
the negative samples more closely. With only a limited number
of examples to learn from, learning by juxtaposition allows us to
formulate our problem of modeling the client’s style preferences
into more simplistic binary classification problems.

3.4 Principle 4: Learn by Multiple Comparisons

Studies in the learning sciences and cognitive psychology have ob-
served that through comparison against multiple examples, one can
quickly learn a common underlying structure, even if the individual
examples are not fully understood [19, 20]. Building on this insight,
we repeatedly do pairwise comparisons between the unseen design
and the pool of reference examples provided by the client. For a
more detailed description and diagram of the method, please refer
to the Comparison Framework subsection.

4 IMPLEMENTATION

Our four principles are manifested in PseudoClient and guide its
implementation. To the best of our knowledge, we uniquely frame
our task of modeling the client’s personal graphic design style as a
metric learning problem [30]. Given an unseen graphic design, our
objective is to determine its similarity with a set of representative
examples selected by the client. This allows us to then classify the
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Figure 2: The Comparison Framework. We compute pairwise match scores between the test image and each reference image

in the positive support set. The final match score is the median.

design between two classes: client likes and client dislikes. The
following outlines the implementation of PseudoClient, including
(1) the Support Set, (2) the Comparison Framework, (3) the Juxta-
position Network, (4) the Embedding Network, and (5) the training
setup. We wrote our learning framework in PyTorch version 1.6.0.

4.1 Support Set

We take inspiration from the mood board technique [34] by first
asking the client to provide a small selection (Principle 2) of graphic
design examples (Principle 1). More specifically, we ask the client
to pick a few samples they like (positive samples) and another few
samples they dislike (negative samples) (Principle 3). This is our
support set S. We denote a subset of S containing only positive
samples as the positive support set S* and a subset of S containing
only negative samples as the negative support set S™.

4.2 Comparison Framework

Figure 2 visualizes the Comparison Framework. Given an unseen
graphic design I; and a positive support set S*, we perform pairwise
comparisons (Principle 4) between I; and each reference sample
,,,,, m € St to compute their respective match scores Mj,_n
through our Juxtaposition Network (see Juxtaposition Network
subsection on how M is computed). A high match score means that
I; is predicted to be in the same class as I,. This implies that the
unseen design I; matches the client’s personal style, since I is a
sample that the client likes. Conversely, a low match score means
that I; is predicted to be in a different class as I,.. This implies that
the unseen design I; does not match the client’s personal style. We
are therefore learning to classify designs indirectly by evaluating
their similarities with a set of labeled referencing examples (positive
support set S*). We compute match scores with the positive support
set ST as opposed to the full support set S based on our findings from

empirical pilot testing. We found that the client’s negative examples
tend to be less consistent, often consisting of many diverging styles
the client dislikes. We then take the median of the pairwise match
scores My,.. n as the overall predicted match score M. We take the
median rather than the mean to decrease the effects of outliers.

M(I;) = Mediany, eg+ (M(I1, Ir))

4.3 Juxtaposition Network

Since we want to work with a small support set (Principle 2), we
approach the challenge of learning a model to accurately predict
the match score M as a few-shot learning task [17]. Prior work
by Melekhov et al. [35] in image matching showed the strength of
Siamese Networks [29] in generalizing from small datasets. We build
upon this and learn the similarity function between two graphic
design inputs. We design a Juxtaposition Network resembling a
Siamese Network with twin Convolutional Neural Networks (CNN).

Figure 3 visualizes the architecture of the Juxtaposition Network.
The Juxtaposition Network takes in a test image I; and a reference
image I, € S* as inputs and computes a match score M with range =
[0, 1] as output. Our Juxtaposition Network uses a twin architecture.
We first encode each 3x224x224 RGB input image I; and I, into
4096-dimensional feature embeddings f(I;) and f(I) through twin
Embedding Networks (see Embedding Network subsection). We
then compute the weighted L1-distance D between the two feature
embeddings.

D 1y) = |f (1) - f(0y)]

We then translate the distance D into a match score M, which is the
probability that the two inputs belong to the same class, by passing
it through a fully-connected layer (FC) with learned weights ‘W
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Figure 3: Architecture of the Juxtaposition Network
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Figure 4: Architecture of the Embedding Network

and a sigmoid activation function (o).
1
M, Iy) = ———————+——
( t r) 1+ exp’(W'D(It,Ir)

4.4 Embedding Network

Figure 4 visualizes the architecture of the Embedding Network.
The Embedding Network takes in a 3x224x224 RGB image as in-
put and extracts a 4096-dimensional feature embedding as output.
The feature embedding is a vector representation that captures
visual features of the image. We use five convolutional blocks (a
3x3 convolutional layer and a 2x2 max-pooling layer) and two
fully-connected layers. We apply batch normalization and ReLU
activation after the convolutional layers and sigmoid activation
after the fully-connected layers. Our architectural design resembles
the well-researched VGG architecture [48] and performs well em-
pirically. While there are certainly techniques to further optimize
performance [16], they are not the focus of this paper.

4.5 Training Setup

Our training setup consists of two stages: pre-training and finetun-
ing.

4.5.1 Pre-training. To allow our model to quickly learn a client’s
personal style with few examples, we first pre-train a network on
a dataset of graphic design images collected from dribbble.com.
The dataset consists of six different classes (flat, geometric, line,
minimal, pop, vintage) with 50 images each, yielding a collection
of 300 images. We collected the dataset based on querying relevant
keywords, with class labels self-tagged by the artists. Note that
the main purpose of pre-training is to seed the network, letting
our model first learn some basic visual features of graphic design,
such as edges, patterns, or general shapes, an interesting property
of neural networks [58]. Thus, our focus is not to bin all graphic
design work into these six subjective categories. Rather, when the
client trains PseudoClient to model their own tastes, instead of
training a model from scratch with completely random initialized
weights, the client’s model can have a head start by building on the
pre-trained model via transfer learning [39], resulting in a much
shorter training time.

We process the dataset into pairs of graphic design images with
an assigned binary label y. If the images in a pair belong to the
same class, we set y = 1. If the images in a pair belong to distinct
classes, we set y = 0. The pairs are randomly sampled. We resize
the images into 3x224x224 pixels with RGB channels and normalize
each color channel with mean = [0.485,0.456,0.406] and std =
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Participant 4 Participant 5

Figure 5: A snapshot of each participants’ positive and negative sets. Each column represents a participant. The top row displays
an example of their positive set and the bottom row displays an example of their negative set.

[0.229,0.224, 0.225] based on the statistical distribution of ImageNet
[12]. We split our training and validation sets with a 9:1 ratio. We
use the Adam optimizer [28], a batch size of 32, a learning rate of
1 x 1075, and train for 50 epochs. Since the labels are binary, we
use a cross-entropy loss L for every training batch B.

LB)= ) ylog(M(I, 1) + (1 = y) log(1 = M(I1, 1))
Id,,yeB
Training takes around an hour to complete on an NVIDIA GeForce
RTX 2080 Ti graphics card with 11GB of memory.

4.5.2 Fine-tuning. This is the stage where the model learns the
client’s personal preferences. Given a pre-trained model, we fine-
tune the model so that it reflects their own tastes. We begin with
the pre-trained weights and train the model with respect to their
support set S as the new training dataset. Data processing proce-
dures are the same as for the pre-trained model. Therefore, we learn
by juxtaposition (Principle 3), where y = 1 means that the graphic
designs in the pair are both liked or disliked by the client (same
class) and y = 0 means that one of the graphic designs in the pair is
liked by the client while the other is disliked by the client (different
class). This means we are not directly learning whether a design
is liked or disliked by the client, but rather learning its similarity
with both the liked and disliked example sets. We train our model
until it can consistently predict the correct y label for each pair.
We use the same optimizer and loss function as the pre-trained
model, a batch size of 16, a learning rate of 1 X 1078, and train for
20 epochs. Training takes around ten minutes to complete on the
same hardware as for the pre-trained model.

5 EXPERIMENTS

To evaluate the effectiveness of PseudoClient, we performed several
experiments. This serves as a litmus test of the system’s perfor-
mance. The following outlines our setup and various experiments,
including:
o Comparisons with baselines. We evaluate PseudoClient’s
performance by comparing against other methods, namely,

softmax-based approaches (Convolutional Neural Networks)
and traditional distance measurements (color histogram dis-
tance).

o Exploration of various factors. To discover usage guide-
lines for future designers and offer an understanding of how
designers can work with PseudoClient for their needs, we
explore how various factors can affect PseudoClient’s ability
to learn personal style. We focused on two factors: number
of examples (dataset size) and different ratios of positive and
negative examples (class imbalance).

e Query results. Finally, as graphic design is a highly visual
medium, we want to see how PseudoClient performs qualita-
tively to uncover insights that may not be portrayed through
numbers. We do this through a simple image retrieval task,
visualizing the retrieval results.

5.1 Setup

Given that our task is to learn personal style preferences, we evalu-
ate our accuracy in doing so with five people: two of the paper’s
authors and three volunteers. For each participant, we ask them to
first come up with a simple design idea (e.g., an illustration for a
local French bakery). We then ask them to select 70 images that fit
their design idea (positive set) from dribbble.com. This is for our ex-
perimental purposes, such that we have enough images for various
levels of training and testing. In an actual usage scenario, partici-
pants would not need to supply as many examples (see Number of
Examples subsubsection).

After all participants finish selecting their positive sets, partic-
ipants then select another person’s positive set (from the pool of
positive sets of all other participants) as their negative set. Our re-
quirement is that their selected negative set doesn’t fit their design
idea. One potential constraint of this approach is that a participant
may struggle in selecting a negative set from the pool if all other
positive sets match closely with theirs. However, such an issue did
not occur during our specific study (maybe because participants
had different design ideas). Thus, each positive set was stylistically
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Table 1: The accuracies of different methods between participants P1 - P5 and overall. The highest accuracy is highlighted in
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bold.
Method P1 Accuracy P2 Accuracy P3 Accuracy P4 Accuracy P5 Accuracy Overall Accuracy
Chance 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
Color Histogram 69.00% 26.00% 53.00% 55.00% 58.00% 52.20%
CNN 67.00% 63.00% 76.00% 53.00% 62.00% 64.20%
PseudoClient (Ours) 86.00% 77.00% 90.00% 64.00% 80.00% 79.40%

different from the negative set. For a snapshot of what the par-
ticipants picked as their positive and negative sets, please refer
to Figure 5. For each positive and negative set of 70 images, we
randomly allocate 50 as our test set and 20 as our training set. This
means that 50 of the 70 images will be used as a true test set and not
be used for training. For each training set of 20 examples, we further
randomly sample various training sets of 1, 5, 10, and 20 examples
for our later study on how different numbers of training samples
affect performance (see Exploration of Various Factors subsection).
For our comparison with baselines and qualitative query results
studies, we use the training set of 5 examples (i.e., training with
only 5 positive and negative examples). This follows our objective
of learning by a handful of examples (Principle 2).

We train a separate model for each participant. To measure the
accuracy of the model, we then compute a match score for each of
the 50 examples in their unseen positive test set as well as for each
of the 50 examples in their unseen negative test set, by pairwise
comparisons with all examples in their positive training set (see
Comparison Framework subsection). Note that the match score
M is a numeric value with range = [0, 1] where a higher value
implies higher predicted similarity with the positive support set,
and a lower value implies a lower predicted similarity with the
positive support set. For the positive test set, if M is greater than
the threshold of 0.5, we note down a correct true positive (TP)
prediction. For the negative test set, if M is less than the threshold

of 0.5, we note down a correct true negative (TN) prediction. Our

. . b TP b TN ..
accuracy is then given by 24724 of IJB(? umber of TN Finally, we

take the average of the accuracies for each participant as the overall
accuracy.

5.2 Comparison with Baselines

We implemented two baseline models to compare against our method:

(1) color histogram and (2) a convolutional neural network (CNN).
Our first baseline is based on the distance of color histograms, which
is a widely used metric for evaluating similarity between images
[22]. We first extract a 3D histogram from each RGB image, using 8
bins per channel and normalize with range = [0, 256]. We then flat-
ten the histogram, yielding a 512-dimensional vector. To compute
the distance between a pair of vectors, we compute its correlation
[3]. The correlation is a numeric value with range = [0, 1], where
higher correlation implies smaller distance and more similarity and
and lower correlation implies larger distance and less similarity.
We compute the overall accuracy of the color histogram method
using a similar procedure as the second paragraph of the Setup
subsection. However, instead of using a fixed threshold of 0.5, we
set the threshold as the mean correlation value between images in

the training set since the distribution of correlation values differ
greatly across different participants.

Our second baseline is a standard implementation of a CNN, rep-
resenting a typical neural-network-based approach for classifica-
tion. We use the architecture of our Embedding Network with a sin-
gle output node. Rather than computing a match score, we directly
classify whether the unseen test image is liked or disliked by the par-

.. . . b t predicti
ticipant. The accuracy is then given by Z22¢" of Corlgff precictions

and we also take the average of the accuracies for each participant
as the overall accuracy.

By learning to classify designs indirectly via learning their simi-
larities with a positive support set, our hypothesis is that Pseudo-
Client would perform better than a standard CNN implementation,
given the nature of our task: “whether a design is more similar
to the set of like examples or the set of dislike examples” seems
more learnable than naively judging “whether a design is liked
or disliked” The latter is an intrinsically ambiguous task, since
like/dislike more often falls on a scale as opposed to being a perfect
dichotomy. In addition, we also hypothesize that color alone would
not be sufficient for determining personal style. From Table 1, we
observe that color histogram performs only marginally better than
random chance. The CNN, which is essentially PseudoClient’s Em-
bedding Network, still struggles to classify consistently. Overall, we
observe that PseudoClient is able to outperform our two baselines
for all participants, supporting our hypotheses.

5.3 Exploration of Various Factors

5.3.1 Number of Examples. We first investigate how supplying
different training sample sizes affects PseudoClient’s performance.
Our hypothesis is that accuracy will increase as the number of
examples increases, and we test our hypothesis by training separate
models using 5, 10, and 20 positive and negative examples and
evaluating their accuracies. We do not explore beyond 20 examples
since it goes beyond the definition of “few examples” based on
feedback from our participants. We also evaluate how well our pre-
trained model can generalize to personal style without any further
fine-tuning and given only 1 reference example.

Table 2 summarizes the accuracies of PseudoClient when given
different numbers of examples for each participant and overall. We
observe that accuracy generally increases as the number of exam-
ples increases, confirming our hypothesis. However, interestingly,
when compared to the overall accuracy of the models using 5 ex-
amples, the overall accuracy of the models using 10 examples did
not increase and even dipped slightly. This may suggest that an
increase in performance may only be prompted by a sufficiently
large increase in sample size. Another interesting observation is
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Table 2: The accuracies of PseudoClient when given different numbers of examples between participants P1 - P5 and overall.
The highest accuracy is highlighted in bold.

# Examples P1 Accuracy P2 Accuracy P3 Accuracy P4 Accuracy P5 Accuracy Overall Accuracy
1 47.00% 74.00% 47.00% 53.00% 70.00% 58.20%
5 86.00% 77.00% 90.00% 64.00% 80.00% 79.40%
10 83.00% 73.00% 93.00% 66.00% 75.00% 78.00%
20 88.00% 80.00% 96.00% 77.00% 92.00% 86.60%

Table 3: The overall true positive percentages, true negative percentages, accuracies, and F1 scores of PseudoClient when given

different ratios of positive and negative examples. The highest results are highlighted in bold.

Number of Positive:Negative Examples

True Positives

True Negatives Accuracy F1 Score

10:5 82.40%
5:10 65.20%

68.40%
82.80%

75.40% 0.77
74.00% 0.71

that our pre-trained model, given only 1 guiding example, is able to
perform better than random chance by some amount for P2 and P5.
The reason may be that the examples chosen by these participants
are more uniform, granting the single example a greater represen-
tative capacity. Hence, designers should note that clients who have
tighter style preferences may not need to supply as many examples.

5.3.2  Ratio of Positive and Negative Examples. Previously, we trained
our models with equal amounts of positive and negative examples.
We thought it would be interesting to also investigate how perfor-
mance would be affected if the client gives more positive examples
and fewer negative examples, and vice versa. We hypothesize a
higher TP when given a higher ratio of positive examples and a
higher TN when given a higher ratio of negative examples. We ex-
perimented with two setups: 10 positive examples with 5 negative
examples and 5 positive examples with 10 negative examples.

Table 3 summarizes the overall true positive percentages, true
negative percentages, accuracies, and F1 scores of PseudoClient
when given different ratios of positive and negative examples. We
observe that the model predicts true positives more consistently
when given more positive examples and predicts true negatives
more consistently when given more negative examples, supporting
our hypothesis. This reveals an interesting property: designers may
adjust the ratio of positive and negative examples required for their
specific goals. For example, if the goal is targeted towards identify-
ing and filtering out what the client dislikes, then the designer may
ask the client to focus on supplying more negative examples.

5.4 Query Results

We qualitatively evaluate the performance of PseudoClient with
an image retrieval task. We query for the top 10 images with the
highest match scores from a database of graphic design samples.
Our database consists of a subset of the Dribbble dataset from
[8] and some examples selected by the participants. None of the
samples were used for training.

Figure 6 visualizes two example queries. The samples bounded
by the dashed lines are the positive examples used for training (pos-
itive support set) and the samples bounded by the solid lines are the

top-10 queried results ranked from 1 to 10. We observe that Pseu-
doClient is able to retrieve stylistically similar graphic designs by
synthesizing from a few examples. Interestingly, a couple retrieved
designs in Figure 6a even belong to the same artist as the provided
examples, demonstrating PseudoClient’s capability of recognizing
personal design style. Note that the retrieved samples don’t nec-
essarily have similar color as the provided examples. For example,
the top-ranking retrieval in Figure 6b has a light cream background
despite most of the examples having darker backgrounds. Nonethe-
less, its resemblance to the examples in terms of artistic style is
apparent. One limitation we discovered from the queried results is
that PseudoClient judges samples in a more holistic sense and may
overlook fine-grained but important details such as font styling
(see Figure 6b). For example, serif and san-serif fonts may elicit
different emotions [44]. We suggest an approach to address this in
the Limitations and Future Work section.

6 APPLICATIONS

We suggest possible applications that can be enabled using Pseudo-
Client by illustrating its use cases in augmenting designers from
three directions: (1) search, (2) feedback, and (3) generation.

6.1 Search

A natural application of PseudoClient is an example-based, per-
sonalized style search engine (Figure 7a). Prior work has shown
that being able to find high quality examples is a crucial part of
the creative design process for not only gaining inspiration, but
also exploring alternatives and performing comparative evaluations
[23]. An example usage scenario may be that shown Figure 6. The
designer may first request a few examples from the client. Using
these examples, the designer may then search for even more ex-
amples of similar style. Note that unlike existing search tools built
into many design sharing websites, a search engine built on top of
PseudoClient has the benefit of searching directly with examples
instead of tagging based search with subjective keywords [8]. Fur-
thermore, style-based search can surface designs that have not been
tagged with keywords. This setup provides a powerful mechanism
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Figure 6: (a) and (b) show two example query results. The dashed lines contain the positive examples used for training (positive
support set). The solid lines contain the queried samples with the highest match scores, ranked from 1 to 10.
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Figure 7: PseudoClient can be used as a building block for multiple practical design applications. We explore applications from

three directions: (a) search, (b) feedback, and (c) generation.

for locating potential relevant design examples to draw inspiration
from, without having to overwhelm the client with the task of pro-
viding large quantities of examples themselves or going through
lengthy meetings for designers to probe and synthesize their tastes.

Extending beyond searching for design examples, PseudoClient
may also be used for clients to search for designers. Since designers
often also have their own personal style, it is sensible for clients
to find designers who have personal styles that match their tastes.
Given a designer’s design portfolio, PseudoClient can assess the
portfolio’s overall similarity with the client’s personal style pref-
erences. The client may thus do a “reverse designer search” with
PseudoClient to discover the top designers who most fit their needs.
Similarly, one may also do a “reverse design community search”
with PseudoClient to discover the top design communities that are
most well aligned with their personal style preferences. A fellow
designer pointed out that being able to cluster designers or design
communities by style may also reveal how designers are influenced
by one another and unravel interesting design trends and patterns.

6.2 Feedback

The ability of PseudoClient to assess similarity by style opens the
possibility of an automatic design feedback system. By referencing
the few examples given by the client, PseudoClient can provide
rapid, automatic design feedback to the designer for evaluating how
well the designer’s design drafts align with the client’s personal
tastes (Figure 7b). Such an application can potentially increase
the quality of design work by allowing the designer to receive
timely critique for iterative exploration of alternatives and ensure
that their design direction remains aligned with the client’s tastes,
without the constraint of the client’s limited availability [13]. This
is especially timely as an increasing amount of design work shifts to
nowhere and everywhere (remote) where latency between design
cycles is substantially magnified due to time zone differences and
the absence of face-to-face meetings.

Another interesting use case of PseudoClient’s capability of giv-
ing feedback, suggested by another fellow designer, is a tutorial
system for beginners to mimic the styles of masters.

“Art is sourced. Apprentices graze in the field of
culture.”

— Jonathan Lethem, Writer

A common way for beginner artists to improve their techniques
is by performing master studies. During this process, the begin-
ner studies the techniques of a master by recreating a piece of
work using a similar style [1]. However, whether the master copy
truly aligns with the master’s style may ultimately be difficult to
determine. Given a handful of the master’s work as examples, Pseu-
doClient can be applied as a simple tutorial system by rating the
beginner’s master copy. Implementing an activation map to reveal
which regions of the copy matches with the master’s style may
further increase explainability and actionability of PseudoClient’s
feedback [7]. Such an application can also extend to mimicking the
artist style of an era or genre.

Since PseudoClient effectively learns a model of one’s personal
style preferences, its feedback capability can also be repurposed
for personal authentication. Google’s reCAPTCHA system serves
hundreds of millions of CAPTCHAs every day to tell humans apart
from computers [53]. Users are presented a set of 9 or 16 square
images and asked to identify which images contain certain objects.
For our use case, we can first ask a user to select a small positive
support set of design images upon the creation of an account. Pseu-
doClient may then serve as an authentication system, in similar
fashion to reCAPTCHA, by asking the user to select the design
images that most align with their personal style preferences and
judging its overall stylistic similarity with the positive support set
associated with the account for authentication. The core assump-
tion behind is that one’s unique style preference can be personal
enough to serve as a mental metric (as opposed to biometrics) for
personal identification.

6.3 Generation

PseudoClient may also serve as a key component in generative
design methods, such as Generative Adversarial Networks (GANs)
[21]. We can think of GANs as two actors, a generator and a dis-
criminator, working against each other to generate realistic designs.
The generator attempts to hallucinate “fake” yet plausible designs.
The discriminator attempts to differentiate between “fake” designs,
generated by the generator, and “real” designs, from a set of real de-
sign examples. Competing against each other, each actor becomes
better and better at doing its job, until the generated “fake” design
is barely distinguishable from a “real” design. PseudoClient may
be used as a discriminator (Figure 7c). Instead of differentiating
between “real” and “fake” designs, our new discriminator differenti-
ates between designs that the client “likes” or “dislikes” with respect
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to their personal style preference. On the other hand, the generator
(or “PseudoDesigner”) attempts to minimize the difference between
its generated designs and the “like” examples provided by the client.
Designers may thus utilize this adversarial behavior to synthesize
designs that resemble the client’s personal style preferences. We
hope that such a generative system can become a useful tool, not to
replace the role of designers, but to assist designers in serving as a
source of inspiration, for rapidly prototyping new alternatives, and
fundamentally making design work more accessible to novices.

7 LIMITATIONS AND FUTURE WORK

While PseudoClient performs well and appears to learn personal
style, there are several limitations. These limitations suggest inter-
esting avenues for future work. First, while PseudoClient is able
to learn personal style holistically, more fine-grained elements
such as variations in typeface may be overlooked, perhaps due
to downsampling. A possible approach to address this may be to
first semantically segment a design in order to distinguish between
different design elements, as opposed to treating the entire design
as a whole. For example, a design’s typeface or background (with
foreground subtracted) could be treated as separate features for
learning. This being said, adding more feature engineering could
lead to overly constrained systems. Second, a limitation raised by a
fellow designer is that while PseudoClient is able to learn style in a
visual sense, it is not able to explicitly understand a design based
its content. For example, the use of skulls and bones in Figure 6b
may correlate with specific styles (e.g., grunge, vintage, spooky),
although their usage per individual may be different based on how
they interpret these symbols and the context that surrounds them.
It would be interesting to explore how content could correlate to
personal elicitations of style and how (in)consistent they might
be across different individuals. Third, while our evidence suggests
that PseudoClient is able to distinguish between different styles, we
may see that the positive and negative styles of participants in our
experiments were quite different from each other. This motivates
future work on exploring various degrees of similarity between
positive and negative styles, such as investigating how Pseudo-
Client can learn very subtle style differences. Finally, PseudoClient
currently functions more as a component rather than as a fully
fleshed out design application. For future work, we plan to work
with PseudoClient as a design material [57] to implement some of
the design tools discussed in the Applications section and evaluate
them via user studies with designers and clients.

8 POTENTIAL RISKS AND IMPLICATIONS

The introduction of PseudoClient into the design workflow may
also come with potential risks and implications. For example, due
to the nature of black box models, designers may not be able to in-
terpret and explain the suggestions made by PseudoClient to their
clients. Arguably, clients may feel that the design decisions are
purely arbitrary. An extension to increase interpretability may be
to generate an activation map [43] that visualizes which regions of
the design the model focuses on for making its predictions. Another
potential risk is that our system when utilized in a search system
could bury certain artists’ work due to potential biases in the net-
work. Future work should explore whether different decisions in
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the modeling process may lead to some kinds of work not being
surfaced. Ultimately, as with any assistive system in a real world
deployment, one should consider how the system affects various
stakeholders and be wary of being overly reliant on the system’s
suggestions.

9 CONCLUSION

This paper demonstrates how we can leverage the pattern recog-
nition capability of computational models to learn personal style
preferences from only a few examples. We offer a set of principles
built on prior work to ground our solution. Based on these prin-
ciples, we designed PseudoClient, a metric-learning-based deep
learning framework that learns a model of personal graphic design
style. PseudoClient operates in an example-based manner, with-
out relying on subjective style terms, and requires only a small
handful of examples. In various experiments, we demonstrate that
PseudoClient outperforms several alternative methods and offer an
understanding of the levers that designers can alter to adjust or im-
prove PseudoClient’s ability in learning personal style. Finally, we
discuss several applications that could be powered by PseudoClient
from three directions: search, feedback, and generation.

This work takes a step towards the philosophy of computational
design understanding with only a small number of data samples,
which we argue increases the practicality of machine learning meth-
ods for design applications. We hope PseudoClient can be used as a
building block to support the development of future design applica-
tions and serve as a foundation for future work on computationally
understanding visual design style. For more information, please
visit https://chuanenlin.com/personalstyle.
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